Semigroups with the ascending chain condition on (principal) right ideals

Craig Miller

University of York

21 October 2020

Craig Miller (University of York) Semigroups with the ascending chain conditio

A *finiteness condition* for a class of universal algebras is a property that is satisfied by at least all finite members of that class.

We call a semigroup S weakly right noetherian if it satisfies the ascending chain condition on right ideals; that is, every ascending chain

$$I_1 \subseteq I_2 \subseteq \cdots$$

of right ideals eventually terminates.

We shall consider the finiteness conditions of being weakly right noetherian and satifying the ascending chain condition on *principal* right ideals (ACCPR). **Proposition**. The following are equivalent for a semigroup *S*:

- S is weakly right noetherian;
- 2 every non-empty set of right ideals of S has a maximal element;
- \bigcirc ever right ideal of S is finitely generated.

Proposition. A monoid M is weakly right noetherian if and only if every finitely generated right M-act A is noetherian (i.e. A satisfies ACC on subacts).

Proposition. The following are equivalent for a semigroup *S*:

- S satisfies ACCPR;
- every non-empty set of principal right ideals of S has a maximal element.

Equivalent formulations

Theorem. The following are equivalent for a semigroup *S*:

- S is weakly right noetherian;
- S satisfies ACCPR and contains no infinite antichain of principal right ideals (under ⊆);
- S contains no infinite ascending chain or infinite antichain of *R*-classses.

Sketch of proof. (1) \Rightarrow (2). Clearly *S* satisfies ACCPR. If there exists an antichain $\{a_iS^1: i \in \mathbb{N}\}$, then $a_1S^1 \subsetneq \{a_1, a_2\}S^1 \subsetneq \{a_1, a_2, a_3\}S^1 \subsetneq \cdots$. (2) \Rightarrow (1). Suppose *S* is not w. r. n. but satifies ACCPR. There exists $l_1 \subsetneq l_2 \subsetneq \cdots$. Choose $a_1 \in l_1$ and $a_k \in l_k \setminus l_{k-1}$ for $k \ge 2$. Then $a_kS^1 \nsubseteq a_jS^1$ for j < k. The set $\{a_iS^1: i \in \mathbb{N}\}$ contains a maximal element, say $a_{k_1}S^1$; that is, $a_{k_1}S^1 \nsubseteq a_jS^1, j \ne k_1$. The set $\{a_iS^1: i \ge k_1 + 1\}$ contains a maximal element, say $a_{k_2}S^1$. Then $a_{k_2}S^1 \oiint a_jS^1, j \in \mathbb{N} \setminus \{k_2\}$. Continuing in this way, we obtain an infinite antichain $\{a_k, S^1: i \in \mathbb{N}\}$. Any semigroup with finitely many \mathcal{R} -classes is weakly right noetherian.

In the bicyclic monoid every right (and left ideal) is principal, so it is weakly right (and left) noetherian.

Every finitely generated commutative semigroup is *noetherian* (satisfies ACC on congruences) and hence weakly noetherian.

Every free semigroup F_X satisfies ACCPR, since $u <_{\mathcal{R}} v \Leftrightarrow v$ is a proper prefix of u.

 F_X is weakly right noetherian iff |X| = 1. Indeed, if x, y are distinct element of X, then $\{\{x^iy\}: i \in \mathbb{N}\}$ is an infinite antichain of \mathcal{R} -classes.

Polycyclic monoid: $P_X = \langle X, X^{-1} | xx^{-1} = 1, xy^{-1} = 0 (x, y \in X, x \neq y) \rangle$. P_X satisfies ACCPR for any X, but P_X is w. r. n. iff |X| = 1. **Lemma**. Let S be a semigroup and let T be a homomorphic image of S. If S is weakly right noetherian, then so is S.

Remark. The property of satisfying ACCPR is not closed under homomorphic images. Indeed, any free semigroup satisfies ACCPR.

Proposition. Let *S* be a semigroup and let $\rho \subseteq \mathcal{R}$ be a congruence on *S*. Then *S* is weakly right noetherian (resp. satisfies ACCPR) if and only if S/ρ is weakly right noetherian (resp. satisfies ACCPR).

Proposition. Let S be a semigroup and let I be an ideal of S. If both I and the Rees quotient S/I are weakly right noetherian, then so is S.

Proposition. Let S be a semigroup and let I be an ideal of S. If S satifies ACCPR, then so do both I and S/I.

Proof for *I*. $a_1I^1 \subseteq a_2I^1 \subseteq \cdots \Rightarrow a_1S^1 \subseteq a_2S^1 \subseteq \cdots$. There exists $n \in \mathbb{N}$ such that $a_mS^1 = a_nS^1$, $m \ge n$, so $a_m = a_ns_m$, $s_m \in S^1$. There exist $u_m \in I^1$ such that $a_n = a_mu_m$. Then $a_m = a_n(s_mu_ms_m) \in a_nI^1$. Thus $a_mI^1 = a_nI^1$.

Remark. The property is being weakly right noetherian is not closed under ideals.

Open problem. If S is a weakly right noetherian semigroup with a minimal ideal K, is K weakly right noetherian?

Construction

Let *S* be a semigroup, let $\theta : S \to T$ be a surjective homomorphism, and let $N = \{x_t : t \in T\} \cup \{0\}$ be a null semigroup. Define a multiplication on $S \cup N$, extending those on *S* and *N*, as follows:

$$sx_t = x_{(s\theta)t}, x_ts = x_{t(s\theta)}, s0 = 0s = 0.$$

With this multiplication $S \cup N$ is a semigroup, denoted by $\mathcal{U}(S, T, \theta)$.

Proposition. Let $U = U(S, T, \theta)$.

- U is weakly right noetherian iff S is weakly right noetherian.
- **2** U satifies ACCPR iff both S and T satify ACCPR.

Remark. Infinite null semigroups satify ACCPR but are not weakly right noetherian. Let T be a semigroup that does *not* satify ACCPR, and let $\theta: S \to T$ be a surj. hom. where S satisfies ACCPR (e.g. a free semigroup). Then U does not satify ACCPR, but both N and $U \setminus N = S$ do.

Subsemigroups

Lemma. Let S be a semigroup that is a union of subsemigroups S_1, \ldots, S_n . If all the S_i are weakly right noetherian, then so is S.

Example. Let $S = \langle a, b, c | abc = b \rangle_{Sgp}$. Then $S \leq \langle a, b, c | abcb^{-1} = 1 \rangle_{Gp}$. However, *S* does not satify ACCPR: $b <_{\mathcal{R}} ab <_{\mathcal{R}} a^2 b <_{\mathcal{R}} \cdots$.

We say that a subsemigroup T of a semigroup S is \mathcal{R} -preserving (in S) if for all $a, b \in T$ we have $aS^1 \subseteq bS^1 \Rightarrow aT^1 \subseteq bT^1$. E.g. If T is regular, or if $S \setminus T$ is a left ideal.

Proposition. Let S be a semigroup and let T be an \mathcal{R} -preserving subsemigroup of S. If S is weakly right noetherian (resp. satifies ACCPR), then T is weakly right noetherian (resp. satisfies ACCPR).

Corollary. S is w. r. n. (resp. satisfies ACCPR) iff S^1 is w. r. n. (resp. satisfies ACCPR) iff S^0 is w. r. n. (resp. satisfies ACCPR).

Direct products

Let S be a semigroup and let $a \in S$. We say that a has a *local right identity* if $a \in aS$, i.e. there exists $b \in S$ such that a = ab.

Theorem. Let S and T be semigroups with S infinite.

- Suppose T is infinite. Then S × T is w. r. n. iff both S and T are w. r. n. and every element of both S and T has a local right identity.
- Suppose T is finite. Then $S \times T$ is w. r. n. iff S is w. r. n. and every element of T has a local right identity.

Theorem. Let S and T be semigroups. Then $S \times T$ satifies ACCPR iff one of the following holds:

- both S and T satify ACCPR;
- S satisfies ACCPR and has no element with a local right identity;
- § T satisfies ACCPR and has *no* element with a local right identity.

Theorem. Let S and T be semigroups. Then $S \times T$ satifies ACCPR iff one of the following holds:

- both S and T satify ACCPR;
- **2** S satisfies ACCPR and has *no* element with a local right identity;
- \bigcirc T satisfies ACCPR and has *no* element with a local right identity.

Corollary. Let *F* be free semigroup. Then $F \times S$ satisfies ACCPR for any semigroup *S*.

Corollary. Let S be a semigroup and let T be a finite semigroup. Then $S \times T$ satisfies ACCPR iff S is satisfies ACCPR.

Free products

Let S and T be semigroups defined by presentations $\langle X | Q \rangle$ and $\langle Y | R \rangle$, respectively. The *semigroup free product* of S and T, denoted by S * T, is the semigroup defined by the presentation $\langle X, Y | Q, R \rangle$. If S and T are monoids, then the *monoid free product* of S and T, denoted by $S *_1 T$, is defined by the presentation $\langle X, Y | Q, R, 1_S = 1_T \rangle$.

Theorem. Let S and T be semigroups. Then S * T is weakly right noetherian iff both S and T are trivial.

Theorem. Let S and T be monoids. Then $S *_1 T$ is weakly right noetherian iff one of the following holds:

- **(**) S is weakly right noetherian and T is trivial, or vice versa;
- 2 both S and T contain precisely two elements;
- \bigcirc both S and T are groups.

Theorem. Let S and T be semigroups (resp. monoids). Then S * T (resp. $S *_1 T$) satisfies ACCPR iff both S and T satisfy ACCPR.

Let Y be a semilattice and let $(S_{\alpha})_{\alpha \in Y}$ be a family of disjoint semigroups, indexed by Y.

If $S = \bigcup_{\alpha \in Y} S_{\alpha}$ is a semigroup such that $S_{\alpha}S_{\beta} \subseteq S_{\alpha\beta}$ for all $\alpha, \beta \in Y$, then S is called a *semilattice of semigroups*, and we denote it by $S = S(Y, S_{\alpha})$.

Now let $S = \bigcup_{\alpha \in Y} S_{\alpha}$, and suppose that for each $\alpha, \beta \in Y$ with $\alpha \ge \beta$ there exists a homomorphism $\phi_{\alpha,\beta} : S_{\alpha} \to S_{\beta}$. Furthermore, assume that:

- for each $\alpha \in Y$, the homomorphism $\phi_{\alpha,\alpha}$ is the identity map on S_{α} ;
- for each $\alpha, \beta, \gamma \in Y$ with $\alpha \ge \beta \ge \gamma$, we have $\phi_{\alpha,\beta} \phi_{\beta,\gamma} = \phi_{\alpha,\gamma}$.

For $a \in S_{\alpha}$ and $b \in S_{\beta}$, we define

$$ab = (a\phi_{\alpha,\alpha\beta})(b\phi_{\beta,\alpha\beta}).$$

With this multiplication, S is a semilattice of semigroups. In this case we call S a strong semilattice of semigroups and denote it by $S = S(Y, S_{\alpha}, \phi_{\alpha,\beta})$.

A (1) < A (2) < A (2) </p>

Proposition. Let Y be a semilattice. Then Y is weakly noetherian iff it contains no infinite ascending chain or infinite antichain of elements.

Lemma. If $S(Y, S_{\alpha})$ is weakly right noetherian, then so is Y.

Example. Let Y be a semilattice and let F be a free semigroup. For each $\alpha \in Y$, let $F_{\alpha} = \{u_{\alpha} : u \in F\} \cong F$, and define $\phi_{\alpha,\beta} : F_{\alpha} \to F_{\beta}, u_{\alpha} \mapsto u_{\beta}$. Then $S(Y, F_{\alpha}, \phi_{\alpha,\beta}) \cong F \times Y$ satisfies ACCPR.

Remark. $\mathcal{S}(Y, S_{\alpha})$ w. r. n. \implies all S_{α} w. r. n.

Lemma. If $S(Y, S_{\alpha})$ satisfies ACCPR, then so do all the S_{α} .

Proposition. If *Y* satisfies ACCP, then $S(Y, S_{\alpha}, \phi_{\alpha,\beta})$ satisfies ACCPR iff all the S_{α} satisfy ACCPR.

Proposition. A regular semigroup S is weakly right noetherian (resp. satisfies ACCPR) iff $\langle E(S) \rangle$ is weakly right noetherian (resp. satisfies ACCPR).

Corollary. An inverse semigroup S is weakly right noetherian (resp. satisfies ACCPR) iff E(S) is weakly noetherian (resp. satisfies ACCP).

Corollary. An inverse semigroup is weakly right noetherian (resp. satisfies ACCPR) it is weakly left noetherian (resp. satisfies ACCPL).

Corollary. A Clifford semigroup $S(Y, G_{\alpha})$ is weakly right noetherian (resp. satisfies ACCPR) iff Y is weakly noetherian (resp. satisfies ACCP).

Completely regular semigroups

A *completely regular semigroup* is a union of groups. Every completely regular semigroup is a semilattice of completely simple semigroups.

Lemma. Let S be a completely simple semigroup.

- S satisfies ACCPR.
- **2** S is weakly right noetherian iff it has finitely many \mathcal{R} -classes.

Example. Let $Y = (\mathbb{N}, \max)$, let $S_i = \{x_i, y_i\}$ be disjoint copies of the 2-element left zero semigroup, let $\phi_{i,i}$ be the identity map on S_i , and for i < j define $\phi_{i,j} : S_i \to S_j, x_i, y_i \mapsto x_j$. Then $S = \mathcal{S}(Y, S_i, \phi_{i,j})$ is not weakly right noetherian since it has is an infinite antichain $\{y_i S^1 : i \in \mathbb{N}\}$.

Proposition. Let $S = S(Y, S_{\alpha})$ be completely regular. If Y satisfies ACCP, then S satisfies ACCPR.

Remark. There exists $S = S(Y, S_{\alpha}, \phi_{\alpha,\beta})$, where each S_{α} is a left zero semigroup, such that S satifies ACCPR but Y does not.

Thanks for listening

Craig Miller (University of York) Semigroups with the ascending chain conditio

э